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A characterization is given for the most general equilibrium configuration of a sym-
metric pendent liquid drop. It is shown that for any vertex height u, the vertical section
can be continued globally as an analytic curve, without limit sets or double points. For
small |u,| it is proved the section projects simply on the axis = 0; for large |u,| the
section is shown to have near the vertex the general form of a succession of circular arcs
joined near the axis by small arcs of large curvature. The section contracts at first toward
a certain hyperbola, the ‘circular arcs’ gradually changing shape but remaining, until
a certain fixed height (asymptotically as #,—> — 00), within a narrow band surrounding
the hyperbola. The continuation of the section eventually projects simply on u = 0,
separates from the hyperbola, and continues in an oscillatory manner to infinity. The
properties described above are studied quantitatively.

It is conjectured that as |#,| = co the section converges uniformly (as a point set) to a
solution U(r) with simple projection (for all 7 > 0) onz = 0 and an isolated singularity
atr = 0. A preliminary (weak) form of the conjecture is proved.

The (liquid drop) solutions are also studied from the point of view of their global em-
bedding in the manifold of all formal solutions of the equations. From this point of view,
the vertex of the drop appears as a transition point marking a change in qualitative
appearance. It is conjectured that the only global solution without double points, in this
extended sense, is the singular solution referred to above.
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308 P. CONCUS AND R.FINN

INTRODUCTION

The form of the outer surface of a pendent liquid drop is determined by the condition that the
mean curvature of the surface be proportional to the distance below a horizontal reference plane.
For points on the surface at which the height can be described by a function z = u(#) we obtain an
equation
div{(HIVV——%—IE)—%; Y (1)
where u is measured positively upward from the plane; k and A are constants. We consider in this
paper the case of physical interest & = (x,, x,), although the methods will extend without essen-
tial change to any number of variables. For background information on the derivation of (1)
see, for example, Minkowski (1907), Bakker (1928), Finn (1974).

In (1) kis a physical constant, « < 0 when the liquid lies above the surface, and Ais a Lagrange
parameter, to be determined by the constraints. (For example, one might constrain the drop to
have a prescribed volume.) In a specific problem the determination of A may lead to technical
difficulties. Formally, however, A can be transformed out of (1) by adding a constant to «. In the
present paper, we shall characterize all symmetric solutions for the case A = 0. A solution corres-
ponding to a given A can then be found in this family by transforming back.

We restrict attention throughout this paper to rotationally symmetric configurations, such as
would occur for a drop suspended from a circular aperture. Introducing the (inessential and

convenient) normalization « = — 1 we obtain, in terms of polar radius 7, the equation
Tu,
) = —ru 2
(<1+ua>%),. (2)

for a symmetric two dimensional surface #(r). The subscript r denotes differentiation with
respect to 7.

Not all surfaces that appear physically have a simple projection on a base plane, hence for a
complete description the form (2) is overly restrictive. We obtain a more suitable (parametric)
form of the problem if we introduce the arc length s along a vertical section of the interfacial
surface, measured from the vertex (0,%,). We are led to the system

dyr/ds = —u— (sinyy)/r,
du/ds = sin, (3)
dr/ds = cos,

where ¢ is the angle between a tangent to the section and the r axis, measured counterclockwise
from the positively directed axis to the tangent line.

From the point of view of general theory, one would expect a solution of (3) to be determined,
at least locally, by the initial data

r(0) = 0; ¥ (0) = 0; u(0) = uy; (4)

however, the system (3) is singular at s = 0, and because of this the second condition in (4) is
superfluous (cf. the discussion in Concus & Finn 19755).

The question of local existence in a neighbourhood of a singular point has been studied by
Lohnstein (1891), who established the convergence of a formal power series expansion. We have
been unable tolocate Lohnstein’s paper and have had toinferits contents from the general reports
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THE SHAPE OF A PENDENT LIQUID DROP 309

(Minkowski 19o7; Bakker 1928). Presumably the Picard method, as adapted by Johnson &
Perko (1968) for the capillarity problem with x > 0, could be made to work also in the case
studied here. For the convenience of the reader, we present in the appendix another proof —
based on the Schauder fixed point theorem — which seems to us conceptually more accessible.

One obtains locally near 7 = 0, by these methods, a non-parametric solution «(r) of the equa-
tion (2), which we may write in the form

(7 sin w)r =—Tu, (5)
corresponding to the (single) initial condition
u(0) = u,. (6)

This solution defines the meridional curve of a capillary rotation surface, with (regular) vertex
on the axis 7 = 0.

The circumstance that only one initial datum is required yields an important simplification
for the problem of characterizing all solutions. It suffices to describe the one-parameter family
determined by u,, and it is this approach we adopt in the present work.

In general, the solution u(r;u,) determined in this way cannot be continued indefinitely as
solution of (5). We shall show however that for any u,, the function u(r;u,) can be extended as a para-
metric solution of (3) for all s, yielding a curve without limit sets or double points. The resulting capillary
rotation surface does not again contact the axisr = 0, and in fact spreads out indefinitely away from that axis.

We shall characterize quantitatively the asymptotic form of the surface in the case of large
|4y, and we shall characterize qualitatively the global structure of all such surfaces.

The global behaviour changes qualitatively when |uy| increases beyond a critical value. If
|uo| is large, there is an initial range for s in which the surface looks like a succession of spheres
centered on the  axis with radius = (2/|«|). In all cases, however, the section can be expressed
for large s in the form u(r) and has an oscillatory behaviour as 7 — co.

If uy = 0 the unique solution of (2) is given by u = 0. We assume throughout this paper that
4, < 0; the remaining case is obtained by a simple change of sign.T We are interested particularly
in what happens when «, is large negative. The resulting surfaces are then physically unstable
under most conditions of everyday experience; however, the problem has an independent
mathematical interest (one specific feature of which we indicate below) and probably also a
physical interest for situations in which gravity forces are small compared with those of surface
tension.

We have proved (in Concus & Finn 1975 ) the existence of a particular singular solution of (2)
that can be expressed in the form U(r) in 0 < r < §, and such that U(r) ~ —r~tas r—0. In an
earlier paper (Concus & Finn 1974) we have presented numerical evidence suggesting that the
symmetric solutions discussed above tend uniformly (as pointsets) to U(r) as |uo| — 0. A particular
consequence of the analysis in the present paper will be a proof of a preliminary form of that
conjecture, namely we shall show in § VI and § VII that the solutions converge asymptotically
into a neighbourhood of U(r), the size of which can be estimated a priori and is small relative to
other (local) distances. The considerations in these sections are rather technical, and the reader
who wishes only a general idea of the method and of'its possibilities may find them in the earlier
sections of the paper.

+ The remaining case can be realized physically, e.g. as the lower surface of a column of water in a glass
capillary tube.

28-2
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310 P. CONCUS AND R.FINN

In § VIII we point out a compactness property, again suggestive for our conjecture. In§ IX the
structure of solutions is examined from another point of view and some numerical results are
presented, suggesting the types of possible global behaviour. These results lead in turn to another
conjecture, namely that the singular solution U(r) is the only global solution (in an extended
sense) that is free of double points.

We remark that we know of few other studies of the problem from a general theoretical point
of view.t To our knowledge the first attempt to characterize the shape of a liquid drop appears in
a paper by Bashforth & Adams (1883), in which a numerical procedure is developed and applied
to configurations in which a vertical point may appear. Thomson (1886) used a geometrical
method and was able to obtain a figure corresponding, in our notation, to %, ¥ — 7. Computa-
tional studies were greatly facilitated by development of high speed computers and related
techniques, and many more particular cases have now been calculated (see, for example, Hida
& Miura 1970; Padday 1971; Concus & Finn 1974; Hartland & Hartley 1976, where also further
references can be found). Such calculations are suggestive and instructive, but they cannot
provide the unifying insight of a general formal description. The present work is intended as an
initial step toward that objective.

In this work we study the formal solutions of the static equilibrium equations. We do not here
treat the related question of stability; with regard to that matter, the reader may wish to consult
the recent papers of Pitts (1973, 1974), Hida & Miura (1970), and also a new contribution by
Wente (1978).

The central difficulty in the general study of the solutions of (2) lies in the failure of the maxi-
mum principle. We replace this principle here by a geometrical one, the conceptual content of
which is that if surfaces S; and S, contact at p, and if their mean curvature vectors w; and , at p
satisfy @; — @, = awy, @ > 0, then S, lies locally on the side of S, into which e is directed. The
analytical formulation IIi of this principle in the situation encountered here yields a global
result and encompasses also the case @ = 0. These circumstances, in conjunction with formal
manipulation of the equation, provide the central tools in our investigation. We proceed in a
succession of steps, most of which are elementary and immediate; when taken together, however,
they yield the requisite characterization.

We remark that the comparison technique just mentioned has proved effective also in other
(related) contexts, and has led in particular to new information on the behaviour of solutions of
(2) near isolated singular points (see, for example, Finn 1976).

I. THE CASE OF SMALL |y
We shall prove:

TrEOREM 1. If, in the initial value problem (5, 6) ihere holds] u, > — 2, then the solution can be con-
tinued as a (nonparametric) solution of the equation

(e, .

Sorallr > 0. It has aninfinity of zeros. For any two successive extremar ., 1y, of u(r) there holds |u(n,)| < |u(r,)].
Asymptotically as uy—> O the first zero 1y is the first zero of the Bessel function Jy(r), ro ~ 2.405.

+ We call attention, however, to a remarkable existence theorem due to Wente (1973).
1 This improves the result announced in Concus & Finn (1974).


http://rsta.royalsocietypublishing.org/

A

'y
N

—%

.
|
L

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/ \

r

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE SHAPE OF A PENDENT LIQUID DROP 311

We study first the portion of the trajectory preceding the first zero, and we note that (2) is
equivalent to (5) on any interval on which |«,| < co.

Ii. Let u(r) satisfy (5) in 0 < r < R and (6) atr = 0. Then? sin ¥(0) =
Proof. Integrating (5) from € > 0 to r, we find
rsinyr —esin () = —-frpu(p)dp;
hence, using (6), we obtain E

sinr = = 7 | o) d, (7

from which we conclude limu,(r) = 0. Hence there exists
r—>0

4,(0) = lim =% _ i L7y () dp = o

>0 r 07 J o

Tii. Let u(r) satisfy (5) in 0 <r < Rand (6) atr = 0.Ifu(r) < 0in 0 <r < R, then sinyy > 01in
that interval.

The proof is contained in (7).
It follows in particular that «(r) >up < 0 as r— R, that sinyp = limsiny(r) exists, and that
r—>R

R
0 <sinyy = _E}J‘o pu(p)dp < L.

We conclude also that if the solution curve does not cross the hyperbola ru = —1, then
sinyyp < 1. The following assertion covers as well the case of solution curves crossing that
hyperbola.

Liii. Under the hypotheses of 11ii, if in addition uy > — 2, then 0 < sinyy < 1in 0 <r < R.

Proof. Consider the relation
K+ Kkm = r~tsinyr + (siny), = —u, (8)

the left side of which splits the mean curvature of the rotation surface defined by «(r) into a sum of
latitudinal (k;) and meridional (km) sectional curvatures. We note by Iii that «(r) is increasing in
0 < 7 < R; thus oy

rising = —r2| pulp)dp > —u(r) (9)

in that interval. Integrating (8) with respect to # and noting that (siny), = — (cos ), yields,

with use of (9), cosyrp > 1 — (=),

which contains the assertion. We infer now from the general existence theorem, applied atr = R,
that the solution curve either can be continued upward until it crosses the r axis, or else it tends
asymptotically to this axis with increasing r. We may however exclude the latter possibility.

Liv. Ifu(r) < 0Oina <r < R < o0, then R < aexp{—u,/asiny(a)}.

T A stronger result of this type is given in Concus & Finn (19%755).
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312 P. CONCUS AND R.FINN
Proof. From (5) we find rsinyy > asiny(a) in a < r < R. By 1ii, sinyr(a) > 0. Thus,
du/dr = tanyy > sinyy > ar~'sinyr(a),

and the result follows on an integration.

We have thus established that if u, > — 2 the solution curve is in its initial trajectory mono-
tonically increasing and can be continued until it crosses the r axis at a point r = ;. To study the
further trajectory, we observe that the curve can be continued at least locally across the axis as a
solution of (5), and we compare its inclination at a given height £ with the inclination of the
initial branch at an equal negative height.

Iv. If the curve can be continued monotonically to a height h above the r axis, then its inclination at this

height is smaller than the inclination of the initial branch at the height — h, that is,

Q) _d
dr n dr

—h

Proof. We integrate (8) with respect to u between the height — /£ and A, obtaining

h
COSlb‘l;,,—COSIﬁl__h =f r‘lsinlﬁdu > 0.
h

—n

/‘_\ T r
‘_/

Ficure 1. The case u, > —2: inflexions.

Ivi. Under the conditions of 1iv, the curve is strictly convex downward when u > 0, and u,, < — u.

Proof. From (8),
(siny), = w,,/ (1 +u2)¥ = —u—r-tsiny < —u.

From Iv and Ivi we find:

Lvii. The curve can be continued to a maximum height hy < |uy| at a point r = m; > a,, at which point
sinyr(m,) = 0.

We now proceed as above, comparing inclinations at corresponding heights until the curve
crosses the r axis a second time, then comparing inclinations as in I v, and so on. We obtain the
qualitative picture indicated in theorem 1, of a curve oscillating about the r axis with successively
decreasing extrema (see figure 1). We note also the additional information, yielded by the method:

T viii. All inflexions of the curve occur on (monotone) curve segments approaching the r axis, in the sense of
increasing s. At any two successive points o, 8, at whick |u(a)| = |u(fB)|, there holds
|du/dr|, > |du/dr|,.
To prove the final statement of theorem 1, we note by (7), Iii and I viii that |u,(r;u,)| tends

uniformly to zero with u,; thus the function v(r;uy) = wg'u(r; u,) tends uniformly to the Bessel
function Jy(r) as uy— 0.
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II. LARGE |#y|; INITIAL ARC

If |uy| is large the above reasoning fails, and so do the results.

THEOREM 2. IfT u, < —24/2, there exists a value ry, beyond which u(r) cannot be continued as a solution
of (5). Asr_»ry, sinyy 4 1.

The proof could proceed by a direct study of the equation, as in § 1. We obtain more precise
results and also develop techniques that will be needed later if we proceed instead via an obvious
comparison principle.

I1i. Let vV(r), v®(r) be functions defined in a < r < b and such that (rsin @), > (rsinyy®),.. Suppose
siny®(a) > sinyy®(a). Then siny®(d) = sinyy®(d), and equality holds if and only if vV =@ +
const.ona < r < b.

The interest in ITi lies in the fact that r—1(rsin ¥), is exactly twice the mean curvature of the
rotation surface defined by «(r), and this circumstance facilitates the choice of comparison sur-
faces. In the present case we choose as initial comparison surface the sphere of constant mean
curvature — }u,, with centre at the point (r,u4) = (0, uy— 2/u,). Thus, if v(r) describes a vertical
section of the sphere, there holds #(0) = v(0), u(r) < v(r) in the interval 0 <7 < —2/u, (see
figure 2). Using Tii, we find:

11ii. The solution u(r) of (5, 6) can be continued at least until v = — 2 Juy, and siny(r) < — Suyr.

We also need:

I1iii. A solution u(r) of (5) admits no inflexions in the region ru < — 1.

Proof. From (8) follows ru+siny = 0 at any inflexion.
Thus, ¥ must continue to increase until either a vertical point is reached or the curve meets
again the hyperbola ru = — 1. Integration of (8) with respect to z and use of Iliiyields

1—costy > — $(u®—ugu).
From this we conclude that a vertical slope appears at a value
uy < Juo[1+ (1~ 8ug?)t], (10)

which completes the proof of theorem 2.
We may use a similar procedure to estimate the value r,. We note thatifw(r) describes a vertical
section of the sphere of constant mean curvature

B =~ [1+ (1 - 85)1] (11)

with centre at (0,u,+ /), then there holds (0) = w(0), and by IIi «,(r) > w,(r) on any interval
0 < r < R along which fu < — 2. This condition is however satisfied at u = u; by (10), hence on
the entire arcu, < u < u;. Weconcludeu(r) > w(r) until the first vertical occursatr = r, < .
We note that at 7 = £, where w,(r) = o, the circle w(r) intersects the hyperbola ru = — 2.
From I11iii we conclude the initial solution curve is convex in the region ru < — 1. This property

1 This improves the result announced in Concus & Finn (1974).
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314 P. CONCUS AND R.FINN
holds in fact for the entire arc; on the segment of #(r) joining the initial point to the point (rc, «c)
on the hyperbola ru = — 1 we obtain from (7, 8,1ii), using the comparison circle o(r),

km = (siny), = —u—r-(sinyy) > —v+4uy > —v(re) + 3%, > 0.

The last relation holds whenever #, < —4/2, which is the condition that »(r) and the hyperbola
ru = —1, u < 0 intersect. We conclude also from 1ii and the relation

. 1(r
siny = —$ru +§;f0p2 u,(p) dp, (12)

that ru > — 2 on the arc considered.
It turns out the sectional curvatures «; and kn are both monotone decreasing on the initial arc.

We have .
%.Kl— s1n¢ qu ) du— -—1(—25—1%—%——u)<0 (13)

by (8, 12). Also, we have from (7), (8) and I1i,
d . _ 1(_siny
km = (sinyr),, = —ur+-r-(2——r—— +u)

(14)
1
<t =) = = [ punl)dp <,
by the convexity of u.

At the initial point (0,#,) there holds &, = km = — }u,. From (8,12,1ii) follows for r > 0 on
the initial arc Km < —3u < K. (15)
From (7, 8) we have also Km = —u—171(siny) > —u+ fu,. (16)

u r 4l r
ru=—1 ri=-1
3
Ficure 2. Initial comparison surfaces, u, < —2./2. Ficure 3. The case uy = ug,.

The inequality (15) implies km < — 4uo, which is the meridional curvature of the comparison

surface v(r). Comparing the surface u(r) with v(r) at corresponding values of « and applying
I1ii now yields 4y > 0(—=2/ry) = tg— 2/, (17)
(see figure 2).

We summarize the above results:

TueoreM 3. Under the condition of theorem 2, the initial arc of the solution curve, from (ry, u,) to (rl, Uy), 18
convex, with sectional curvatures km, K, decreasing and satisfying km < —3u < Ky in 1y < r < ry. There
ot "2 <n < lull= (-1 )

uy—2/uy < uy < tg—Fup[1— (1 —8u5*)].

(18)

+ This improves the result announced in Concus & Finn (1974).
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THE SHAPE OF A PENDENT LIQUID DROP 315

For0 < r < —2/uythe arc lies below the comparison circle v(r) and has smaller curvature, and foruy < u < uy
the arc lies above the comparison circle w(r) and has larger curvature (see figure 2).

Further remark. The hypothesis 4, < — 2,/2 of theorem 2 could be sharpened by using the com-
parison surfaces v(r) and w(r) in (7) and iterating. A direct numerical integration of (7) yields
(Concus 1968) u, ~ — 2.5678 as the value for which a vertical first appears. We find immediately:

IXiv. Let uy, be the largest value of uy for which a vertical point appears. If uy = uy, the vertical occurs at the
second intersection of the solution curve with the hyperbola ru = — 1, and is an inflexion point for the solution
curve (see figure 3).

v (@—cyurtm)
it
e e (74104
1 L 1
a—c a atc r
Ficure 4. Delaunay surface. TFicure 5. Comparison with roulades.
Ifu, < — 5, the upper bounds in (18) can be expressed more simply, yielding
-2 _, - 2 5
0 Uy U
. 5 (19)
Zto—-—-—<u1<u0————3.
0 Uy

These bounds could also be improved by iteration, starting with the comparison surfaces v(r) and
w(r). We note for reference that the asymptotic series obtained in Concus (1968) by formal
perturbation expansion yields, for the normalization used here,

2 4

R e —5

n=- 3u3+0(u0 )s o)
2 448In2 _

u1==u0-u—0—-——§ug—~+0(u05),

as uy—> — 0.

ITI. VERY LARGE |y,

If uy < —24/2 then u(r) cannot be continued beyond 7, as a solution of (2). The curve can,
however, be continued as a solution of the parametric system (3) as long as r remains different
from zero. We study now the behaviour of this family of solutions in terms of the parameter u,
asymptotically as uy-> —o0. We present here and in §IV the first steps in our study of the be-
haviour of this family of solutions in terms of the parameter u,, as u,— — c0. The further continua-
tion of the solution is discussed in §§ VI and VII.

29 Vol. 292. A.


http://rsta.royalsocietypublishing.org/

'y
N
o \

L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

‘//\\ \
/A \

r

A

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

316 P. CONCUS AND R.FINN

We base the discussion principally on I1i; to do so, we introduce as comparison functions the
sections of rotation surfaces generated by the roulades of an ellipse. The following result is due to
Delaunay (1841):

Let an ellipse of major axis 2a and distance 2¢ between focal points, roll rigidly on an axis without slipping.
Let € be the curve swept out by one of the focal points. Then the surface generated by rotating € about the axis
has constant mean curvature H = (2a)~1.

We note that % is periodic with half-period 7 satisfying 2¢ < 7 < ma, and that each half-period
can be represented in the interval a —¢ < 7 < a +¢ by a single valued function v(r) for which the

equation (rsinz’ﬂ')r/r = l/a (21)
holds, and for which sinyr = 1 at the two end points (see figure 4).
We proceed step by step:

The procedure of §IT shows that an infinite slope first appears at (ry,%,), with bounds on
(r, u;) given by (18). The system (3) is non-singular at (ry, %), hence the curve can be continued
beyond this point as a solution of (3, 4). From (16) we find at (r;, #;)

Km > — Uy +3uy > —Juy(1—8ug?)E>0

so the curve turns back towards the # axis, and can be described again (locally) as a solution of
(5). We compare it with a roulade v®(r) whose mean curvature is — 4, and for which a; +¢; = r,
(see figure 5). Since v (r;) = —o0, IIi yields u, < v, hence u(r) > v™¥(r) as long as the con-
tinuation of both # and v® as single valued functions is possible.

The curve v®(r) can be continued toward the u axis only until the point (a; — ¢y, 4, +7;), with
ay—¢, = —2/uy —r, > 05 at this point the slope is again infinite. It follows there is a value r, >
— 2 /u, —r, beyond which this branch of the solution curve cannot be continued as a single valued

function.
From the geometrical interpretation of 7; as the half-circumference of an ellipse with major
axis 2a, = — 2/u, and focal length ¢, = r, —a,, one finds that for large |u|,
2 In |y, | 1
N - _16 ) 22
Ty u1+ PAEE oy 3 +0(1n|u1y) (22)

Let us estimate r, from above. To do so, we compare «(r) with a roulade #,(r), which is deter-

mined by the conditions
dy = —1/(uy +1),

d1+€1 = 7’1,

= f: (a®—c?cos? )i d .

(23)

A formal estimate shows such a roulade exists if u; < — 2.

The conditions (23) are chosen so that the roulade can be placed with its lower vertical point
at (ry,u;) (see figure 5), and so that in that configuration its mean curvature will be exactly the
one determined from the right side of (5) by the upper vertical. Applying ITi we obtain u, >
8D(r), u(r) < 80(r) for all r < 7y for which u(r) < u, +*,. This condition clearly holds for r near r;;
since #0(r) < u, +1,, we conclude it holds on the entire interval d; —¢; < r < ry, thus

0> vM(r) > u.(r) > 6D(r) > —o0
on this interval, and hence the solution can be continued to the left of ;, at least until the value

rg < —2/(uy+1y) —1y = fo. (24)
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For large |uo| we find

Ty = — 2u7' + 8y |ug| =3 1n |uy|, (25)

1
with A=—ﬁ+0(——) 26
21 3 Tn [y (26)
Thus Ty < — 2yt — oy uyd—ry, (27)
with oy = 4+ 0 (ug?1n |uy|). (28)

We now proceed, essentially, as in the proof of theorem 2. We note that
sinyy > sinyy® = — Lruy +r, (1 + 3ryuy) /7;
thus from (24-28) we find for r < S, that
r-ising > —&up® 4+ 0(up’In |uy|).
We integrate (8) in u from u(f3,) ; using the fact that cosyr < 0 until a vertical is reached, and that

cos () > cos Py (fy) = — 321+ O(u3?In |uy),

we are led to a contradiction unless the curve becomes vertical before » has increased by a value
— 16u7®. That is, a vertical must appear at a value

Uy < uy+ T —16u75. (29)

The solution curve then turns back from the axis at (r,, #,) and initiates a further branch.
We have shown for sufficiently large |uo|.

Turorem 4. From (ry, u,) the solution curve continues backwards towards the u axis until a second vertical
is reached, at a point (ry, uy) with

—2/uy—ry <1y < =2/(uy+71y) =11 = ﬁz,}

30
vO(8,) < uy < uy +7,— 16u73. (30)

In the interval vy < v < 1y there holds u, < v, u > vO; in the interval By < v < ry there holds u, > o,
u < 9,

We note in particular that the horizontal distance of the second vertical from the axis exceeds
that of the first vertical from the hyperbola ru = — 2.

I11i. There is exactly one inflexion between (ry,u,) and (74, us).

Proof. Clearly, at least one inflexion appears. Using (8), we find

(ru+siny), = (r/cosyp—1/r)sinyr < 0

on the arc. Hence there is at most one inflexion.

We indicate briefly one further step in the procedure. We construct a roulade »®(r) passing
through (r,, u,), with major axis 2a, = - 2/u,, and a second roulade #®(r) with a property ana-
logous to that introduced for #®(r). Then there holds 1® < u, < v, #® < u < v®in the intervals
for which the comparison makes sense, and (as before) still another point (73, ug) is found such that
siny/(r5) = 1. The procedure can be continued as long as the values of |u(r)| remain sufficiently
large to justify the indicated steps. A detailed description is given in §§ VI and VII.

We find easily:

I11ii. The successive horizontal distances of the vertical points, from the axis and from the hyperbola,

increase monotonically.
29-2
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318 P. CONCUS AND R.FINN

I11iii. On each arc segment returning from the hyperbola to the axis there is exactly one inflexion. The same
statement holds on the remaining arc segments for sufficiently large |u|.

The following result holds for any u, < 0.

THEOREM 5. In the initial region u < 0, the entire curve is bounded (strictly) between the u axis and the
hyperbola ru = — 2 (see figure 6). In this region, the curve can be represented by a single valued function
r = r(u), with |dr(u) /du| < c.

Proof. We note from (8) that at any vertical point not preceded by a horizontal point distinct
from (0, u,) there holds .
(0, ) (siny), = — (ru+ 1) /r,

and thus each such point continues to an outgoing arc or returning arc according asru > — 1 or
ru < —1. We integrate (5) on an outgoing arc starting from (7, %,), @ even (r, = 0), to obtain

rsiny = ra—f pu(p) dp,

and thus #,(r) > 0 on any such arc along which « < 0. We find

r

. 1
rsingr=r, = Yurd=wr) +3 [ o) dp > —dr,— brian),

To,

from which ur > 1, [r—2sinyr > —2.
u
u r e r
ru=-—1
ru=-2 -2
(Taey a)
Ficure 6. The initial region u < 0. Ficure 7. Proof of IV i.

On an arc returning from (ry, u5) we obtain from (5)
1 1 2 2 L 2
ry=rsing = b= uyr) +5 | pou(p) dp,
. TB
and since uz7; > —2, sinyr > — Jur— %r‘lf p2u.(p) dp,
r

from which we conclude easily #,(p) < 0 in the region u < 0. There follows immediately r >
r, > 0 along such an arc,
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IV. GLOBAL BEHAVIOUR

The discussion thus far shows that the solution curve can be continued upward without self-
intersections until it crosses the r axis. For by 1 iii an outward branch must either achieve a vertical
or cross that axis, and the comparison method of § IT yields readily that a returning branch has
the same property. There are no horizontal points, by theorem 5.

We show here that a returning branch cannot cross the r axis. Precisely:
IVi. Let r = ay be the first point at which the solution curve meets the r axis. Then 0 < u,(a;) < oo.

Suppose #,(a;) < 0, or equivalently, cosy; < 0. The curve could then be continued backward
into the negative u-plane until a first vertical (r,, 4,) (see figure 7), at which, by theorem 5,

Tolly > — 2. (31)
We integrate (8) with respect to , from #, to 0, obtaining
0
f r-tsiny du = cosyr; + Sul. (32)
Ue,

Ficure 8. Proof of theorem 6.

To evaluate the left side of (32) we integrate (5) in r between 7 and 7,:

ry—rsing = - f *pu(p) dp < 32— 1),

< §riu, +r,,

by (31). Thus risina > —4u,, (33)

on the entire arc. Placing (33) into (32) yields cosyr; > 0, contradicting the assumption.

Now observe from (8) that at the crossing point «,, the meridional curvature is negative; thus,
if cos yr; = 0 there would again be a backward branch from «, into the negative u-plane, and we
obtain a contradiction as above.

From IVi one sees immediately that the proof of theorem 1 applies without change to the
region r > a4, in the sense that the solution curve continues from the point (4, 0) as indicated in
figure 1. We show now the curve does not intersect the initial branch in the region z < 0.

IVii. Let u,, uz be two successive points on the solution curve such that r,, = 1y, with an intervening vertical
at (r,u,). If r, < 1., then sintyy < siny,; if v, > r,, then sinyyy > sinyfr,.
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Proof. Suppose r,, < r,. From (5) we find
) 8
rpsinty—r, == [ pu(o) dp,
Ty

Ta
rasing=r, == [ pu(o) dp,

Ty

,
and thus since 7, = 7, ry(sinyys—sinyr,) = f “p(u"—u*") dp < 0;
7

Y

e u~ and u* denote values of u on the lower and upper branches. The case r,, > r, follows similarly.
._1\\J‘ U w u

S

olm

2=

=0

L O

=w
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Ficure 9. 4, = —4; singular solution.  Ficure 10. 4, = — 8; singular solution. FicUrE 11. u, = — 16; singular solution.

From IV ii it follows that a < b in figure 8, and thus, ; < b. But &; < £y, any j > 1, by Iviii,
hence %; < b, allj > 1, and thus intersections are excluded.
Combining these results with theorems 1 and 5 we obtain:

TuEOREM 6. The solution of the parametric system (3, 4) defined by the data uy can be continued indefinitely
without limit sets or double points. It has the form indicated in figures 1, 6,9, 10 and 11.

/,,ﬂ
= V. MAXIMUM DIAMETER
§ > We define the diameter of a (symmetric) liquid drop as the largest diameter of all circular sec-
olm tions u = u;, at which the bounding surface is vertical.
=2 E From theorems 1, 5 and 6 we see that each drop has a well defined diameter. It is less obvious
E O that there is a universal upper bound for the diameters of all possible drops, independent of u,.
~ 8 TurorEM 7. Let 8 ~ 2.473 be the unique positive root of the equation

33k 3t = 0. (34)
Then 20 exceeds the diameter of any solution of (3, 4).
We base the proof on a lemma, which also has an independent interest.
Vi. Let u(r) represent a solution curve passing through (a,u,) with —1 < au, < 0, and such that

asinyr, > %a. (85)
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TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

A

'\
/N

=\

¥
/|
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

y \

N

0\

A A

Py

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE SHAPE OF A PENDENT LIQUID DROP 321

Suppose u(r) < 0 in a <r < R. Then sinyr > 0 on this arc segment. If the curve meets the hyperbola
ru = —1in a point (c,u,) witha < ¢ < R, then ¢ < 3%, and siniy, > }.

Proof. We integrate (5) between « and 7, obtaining
rsin —asing, = }(otu,— () +3 [ Pulp) dp, (36)
from which, if o = a, rsiny > —4r%(r) +%frp2ur(p) dp. (37)
a

For r sufficiently near a, there holds sin ¢ > 0. Thus, if sin ¢y were to vanish at any points interior
to @ < r < R, there would be a minimum 7 = r,, > @ at which this occurs. But (37) would then
imply L (ry
0 =r,siny, > EL pu,(p)dp > 0,

a contradiction. Thus, sin ¢ > Oon a < r < ¢, and hence %,(p) > 0 on this interval. Setting now
r = ¢in (37) yields singr, > —dau(e) = 3. (38)
Finally, we note that atr = ¢ the inclination of the solution curve cannot exceed that of the hyper-
bola. Thus, sin ¥, < (1+¢%)~%, and ¢* < 3 follows from (38).

We proceed to prove theorem 7. For any given uy, the maximum width is attained at a point
(Papyns tojn) With —1 > 7y, upey > —2, j > 0 (see §IIT). At the preceding point (ry;, uy;) there
holds either ry; = 0 (if j = 0), or else sinyry; = 1. In either event, (35) holds with a = ry;. Also
—1 < ry;uy; < 0,and thus the curve crosses the hyperbolaru = —1ata point (¢, %), ry; < ¢ < 7g;43.
Setting @ = ¢, 7 = ry;,, in (36) and applying Vi yields, by use of IT i,

78— 3y — 38 < 0. (39)

The (single) positive solution of (34) exceeds any solution of (39). Since jis arbitrary, we conclude
28 exceeds the diameter of any drop.

VI. GENERIC ESTIMATES FOR LARGE |u|

The solutions discussed in this paper are apparently related to a singular solution U(r) of (2),
whose existence we have already proved (Concus & Finn 19754). The function U(r) is defined in a
deleted neighbourhood of r = 0, and there holds asymptotically U(r) ~ —r~1, as r— 0. We have
conjectured that in any interval 0 < @ < r < b < oo, the solutions of (3, 4) admit a single valued
representation u(r; u,) and converge uniformly to U(r), as 4y~ — co. Figures 911 show the results
of calculations supporting the conjecture.

In this section and in the following one we develop asymptotic propertiesof the solutions, which
again support the conjecture, although they do not yet settle it completely. The properties are
described in general terms below and in detail in theorems 8 and 9, and seem of independent
interest.

The crucial new step in the present discussion consists in a more precise use of the Delaunay
comparison surfaces as a device to control the behaviour of the solutions of

(rsinyr), = —ru. (5)

In § ITI we used bounds on these surfaces for estimation of integrals of the right side of (5); we
now propose to introduce the Delaunay profiles themselves into these integrals. It turns out the
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results can be expressed succinctly in terms of elliptic integrals, leading to an improvement in an
order of magnitude of the estimates of § ITI. We are led after some manipulation to the under-
lying recurrence relations (107), (136) and (137) for the displacement of successive ‘vertical
points’ from the hyperbola ru = — 1, which show that, initially, the solution curve becomes closer
to the hyperbola with each successive loop. Integration of these relations shows that the solution
curve contracts toward the hyperbola at least until a height of order |, |, after which it remains
confined within a strip whose width has order |uy|~?, until a height of order |u,|®*+V/, for any
o > 2% Thus, the solution curve converges asymptotically to the hyperbola, uniformly in
] > [u[ s,

For all sufficiently large |«|, we show the solution curve is confined to a strip about ru = —1,
whose width has order |u|=%, uniformly in u, as |uy| = co.

It will be convenient to use here a somewhat different notation than was employed in § 111,
which seems better adapted to the description of generic ‘loops’. We use also the symbols 4, B, to
denote quantities independent of the other terms within a relation, but whose values may how-
ever change within a context. Thus, from y < 4(1+ %)% we may conclude y < 4|x| for large |x|.
The symbol ~ is used to indicate a relation in which terms of (relatively) small magnitude are
neglected. The notation 4 > B means 4 — B is (sufficiently) large, depending on the context,
but independent of u, for || sufficiently large.

(Y‘], 1 vb) (ra 1 Ua)

(TasVa) (ry303)

Ficure 12. Delaunay arcs. (a) Outgoing, (b) returning.

We start with general estimates on Delaunay arcs v(r), which are solutions of

(rsiny), = 2rH, H > 0, (40)

vertical at (7,,0,), (5, Up)> 7o < 1 (see figure 12). We note
H=1/(r,+n), (41)
and an inflexion appears at 7y = (rgmy)t. (42)

We distinguish two cases:
Cask (a) ¢ < §n. Solving for r(), we find

sin i + (k% — cos?yr)® Ty —T,
r = ~ k =
2H T+ 7,

where the upper (lower) sign is to be chosen, according asr > (<) ;.
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Setting cos ¥ = ksin ¢, and using u,(r) = tan i, we integrate (43) to obtain?
1 [in 1
v, == | (1—k2sin?e)bdp = = E(F), 44
w0, = | " (1=ksintp)bdp = 5 B® (44)
where E (k) is the elliptic integral of the second kind, of modulus £.
Ifv; < v < v, then v—v, = Ek)/H-[ksing+E(p,k)]/2H, (45)
where E(p, k) = f " (1—k2sinzr)}dr
0
is the incomplete elliptic integral of the second kind.
Ifv, < v <, then v—v, = [—ksing+E(p,k)]/2H. (46)
At the inflexion (r;,v,), v; =[—k+E(K)]/(2H) +v,. (47)
CasE () r > 4. The discussion is unchanged, exceptin this case —4n < ¢ < 0. We find now
v~ = E(k)/H. (48)
If v, < v < v, then v—v, = —[ksing+ E(p, k)] /2H. (49)
Ifv; < v < v, then v—uv, = E(k)/H—[ksinp—E(p, k)] /2H. (50)
We have, in this case, v, =[k+EK)]/(2H) + v, (51)

We shall need to evaluate integrals of Delaunay arcs, of the form

rp
S ==["poi0) ey

L[
= —1p%)|, -I-—f pz@dp

a3 ([ ) &

for the case i < }m; thelast twointegrals refer to the portions of the curve preceding and following
the inflexion. For ¢ > }n, ¢ < 0 and the limits in the last two integrals become — }m.

Case (a). ¢ < 4n. Taking r(¢), v(p) from (43), (45) and (46), and setting A(p,k) =
(1 —k%sin2p)?, we find, according as r 2 r;,

dv
2 VL T (1—k2) AT 4k 20— 3kA2 — k3 cosd
r P 8H3{+<1 k?) A F 4k2A cos? ¢ — 3kA? cos ¢ — k3 cos® ¢} (53)
After taking account of some cancellation, we obtain
Sy = — 1[0, — rava]+8H3J [(1—£2) A + 43 cos'p] do
—§[rf v, —raval +S(k) [24H, (54)
with S(k) = 8E(k) — (1—£k?) (E(k) +4K(k)), (55)
in
where K(k) =f (1 —A?sin?p)~2de
0

is the complete elliptic integral of the first kind, of modulus £.

+ We note for reference the alternative representation v, —v, = 7, K(k) +r, E(E), where K and E are complete
elliptic integrals of first and second kind, and £ = (r2—7r2)}/r,. Similarly, (45) takes the form v—v, = 7, F(p, k) +
1y [E(R) — E(®, k)], where Fis the incomplete integral of the first kind, and r(1 —£2 sin? @)t = r,, (1 — k2 sin? @)}
= r. In this form of the representation there is no need to distinguish the inflexion; however, the formulae become
technically more complicated in other respects.

30 Vol. 292. A.
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Cask (b). ¥ > %m. In this case, we find by an analogous discussion

Iy = —[riv,—rGva] —S(k) [24H>. (56)

a

Weindicate in a particular configuration how the above expressions can be used to estimate the
solution u(r) of (5). We consider an arc u(r) that is vertical at (r,,u,) and at (g, uy), u, <

(figure 13). We compare this arc with a Delaunay arc »(r), with curvature H = — }u,, and vertical
at (r,,0,) = (r4,4,). The second vertical then appears at (r;,,), determined by
_1/”a = §(ry+1), (87)
and by vy —t, = —2E(k) /u, (58)
. T —T,
with k= r—z-jl_-—ri =147,u, (59)

The general comparison principle IIi applies in the interval 7, < 7 < 1, and yields u,(r) <
v,(r), u(r) < v(r) in this interval. A consequence is that

ry <tg u¥ =u(r) <, (60)

Weextend v(r) to theinterval (r,, ) by defining v(r) = ug,r > r,. From the equation (5) we now
ﬁnd TB ry TB

Tp—Ty = —J pu(p) dp > —f pv(p) dp —f pugdp
To T ()

> ——%[r%vb—rﬁud]+S(k)/24H3—%uﬁ(r§——r§), (61)
which we rewrite in the form

Yoprh+1p > Juy 1z +1,+S(k) [24H3 + 5 (r§ —15) €, (62)

with €5 = up—v,.
We can obtain a similar estimate in the reverse direction by introducing a Delaunay surface
d(r), vertical at (r,u,) and at (f,7,), and with mean curvature A= — 3up. The comparison

principle now yields
ry <1y <fy; B(r) <u(r), r,<r<rg 0(n) <u* <u, (63)

(see figure 13). Integrating (5) we obtain

nre=-| " pulp) dp < - ["rotora0 == [ pito) ap+ f;”pﬁ@) dp
< = Y73y~ ri] + 1SR4 + 10,73 1}) (64)
by (56, 63). We rewrite (64) in the form
(B2 ,+1) < (brdug +1,) +S(F) [2411%. (65)

In order to extract useful information from (62, 65), we need conditions under which a second
vertical will appear, and an estimate for ¢; and the consequent estimates on A, k; we proceed to
obtain them.

We consider, for the case i < }m, the generic configuration indicated in figure 13. Setting, as
before, u* = u(r,), ¥* = ¥ (r,), we find from (5)

7
nsin g+ 1, = = [ " pulp) dp > ~ Juy (s ~12). (66)
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For the upper Delaunay surface v(r) we have from (40, 41, 57)
To= 1y = — (15 —13). (67)
Combining these relations, we obtain

ro(1—=sin¥*) < (v, —u,) (r,+7,) (r,—1,) (68)

so that, by (43), (44) and (57),

. /|
- * =
1—siny* < 4E(k) A (69)
. 2J2[EK)]*( k )%
*
from which cos ¥ < ——= 0 (1 ~7) - (70)
We now observe (sin), = — (cos ), and write (5) in the form
r7isinyr — (cos¢), = —u. (71)
b
L]
[}
1
]
i
]
i
i
/
l’
II
Ficure 13. Comparison with Delaunay arcs; outgoing case.
For allr > r, for which the solution can be continued in the form « = u(r), we conclude
—(cosyp), > —u—1/ry = —u+u,/(1+k). (72)
Integrating in  between the values «* and «, observing cos { > 0 and using (70), we find
e (o e\~ 22IER)IE( K\
1(5) +(u 1+k) Su L () >0 (73)
where we have set Su = u —u*, on the arc considered. We have also
u* < vy =u,—2EKk)/u,
by (58) and (60), and thus
k 2E(k) 2/2[E(k)]* ( k \#
1 2 —_—— —_
3 (8u) +(1+ku°‘ . )Su 0 1+/c) >0 (74)

on any continuation of the solution arc to values u > u*. We conclude that a second vertical must

appear, in every situation for which
ka2 > 1. (75)
30-2
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326 P. CONCUS AND R.FINN

Under this condition we obtain from (74) the simple expression for 3*u = max (u—u*) = uy—u*,
AS 11

o 2RMERBRA+R]E A e
S ThE RER (T4 H YR S Ta

(76)

which limits the height change between the successive verticals. Here € > 0 is arbitrarily small,
for large ku?.

We note the condition (76) ensures that the second vertical (r4, u4) lies to the right of the hyper-
bola ru = — 1, thatis, ryu; < — 1. We show that under this condition, the hyperbola is crossed exactly
once between (r,,u,) and (rg,ug). To see this, we first observe that the comparison function v(r) has
exactly one inflexion, which must appear in the initial interval determined by rv > — 1. Also the

vertical distance from (r,,v,) to the hyperbola ru = —1 is
1 .k 2E(k)
dy = T = “‘mua'l'-;t;-—,

which is positive if ka2 > 1. Thus, r,v, < — 1, and it follows that v(r) meets the hyperbola exactly
once. Since by IIi, u.(r) < v,(r), u(r) meets the hyperbola exactly once in the interval [r,,7,].

We now observe ¢ SE(R) A

5%y > — -
dy—8%*u > TEWATRS vy JRE (77)
by (76). The condition £« > B implies
1 B A4
— Q% e | . O FF R
dy—5%u > |u“|(1+/€ 2L (k) \/B), (78)

which is positive for large B. Thus, u(r) cannot cross the hyperbola in the interval [7,,7,], which
completes the proof.
The result (76) permits us to estimate the error terms in (62) and (65). We find, using (58),
(60) and (76),
0<H-H= Sup—u,) = §(w* —u,) +58%u < §(vy—u,) + $3*u

LB e, o BB A -
for large ku?. Similarly, by (57), (58), (60) and (76),
0 <ry—1y < fy—1y = 2(up—u,) /ugu,
= —4E(k) /ud+8*u/ui + O(|u,|~®) (80)
uniformly in . It follows that 0 < rj—1f < Aluy|, (81)

again uniformly in £.
We have k = 147 u,, k=147, ug, so that, by (59) and (76),
0<k-k= ro(ug—u,) < r,(8%u—2E(k)/u,)
< (1K) (2B(R) /12 + 5%/ |u,])
< (L—k) (2E(k) +¢) uz?, (82)
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for large kuZ. A formal calculation, using the asymptotic estimates for £ and K for £ ~ 1 (¢f.
Jahnke & Emde (1945), ch V), now yields

E(k) - E(k) = O(uz?
( ,) (k) = O(us?) (83)
S(k) —S(k) = O(us?)
uniformly in £. The singularity of K near £ = 1 is here cancelled by the factor (1 —£) in (82).
We note next
— (0= 0(rp)) < €5 < S*utu*—v, < 3*%u < Auz?/\k. (84)

We estimate the left side of (84) by using the explicit representation (45) for the surface
4(r). This representation will apply, as §; < 4(r,) for ku2 > 1. In the present case we find

2E(k) 2E(k) 1 im0l 2 sinzo)d 5
- +ua—-(ZE(ic)/uﬂ)-l_ua——(ZE(k)/uﬂ) [ks1 (pb+f0 (1 —k%sin2¢p) d(p]. (85)

From the definition of v, # we find

vp—0(rp) =

=Ty = —uaf“pdp, (86)
Ty
1y sin i (ry) —7, = —uﬂf pdp. (87)
Ta
Thus 1—sin () = blug—1,) (B —12) /s (88)

and from 1 —sin2¢} = £2sin2¢ there follows, by using (59), (67) and (79),

; k
2¢in2 —2 8
k 1n<p<A1+kua (89)

We place this result in (85) and use (79) to obtain

0 < v, —(ry) < Auz?/\k, , (90)
uniformly in £.
We are now in position to put (62, 65) into more effective forms. We write first, from (62),
with H = —}u,,
: L)* ! D L LS+ 10 (4, —vy) (91)
dUp\Tpt—) —5— > sl ’ﬂ‘;; “ou, 38 (k) + 375 (s —p),
from which

1\2 1)2 1/1 1 1 lu,—u

1 rp+—) —(r,+=) > |=——)—==5Sk) += 2L (rpuy+ 12+ 1rd(us—vy). (92
Zua{(ﬁ+uﬁ) (“-i- a)} 2(% ua) 358 (k) 3 u% (/i/:‘ ) 2b(ﬂ p).  (92)

We have Up— Uy, = Ug—Vy+Vp— U,

= d*u+u* — v, +v,—u,

= _2E(k)/ua+8*u+u*_vb> (93)
which implies, by (76) and (90), that
A4 2E(k) 2E(k) A
_m——z:—<uﬂ—u“<—— u, -I-m (94)
The same calculation yields luy—vy| < Aug®/\k. (95)
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328 P. CONCUS AND R.FINN
We have also, by (80) and (76),
i 4E(k) A
O<7'/;—7'b<rb—7'b=——u—(§'—)+;/m, (96)
with | 4| bounded uniformly in £, u, for large |u,|, from which we derive
1 ‘I"rﬂu/} = 1 +7‘bvb+ (7’/,uﬂ—7’bvb)
= —k—2E(k) ry/uty+ 15ty —vy) +0y(r5 = 7o), (97)
so that the above estimates yield [(1+rpup) +k| < Aug® (98)
uniformly in £.
Returning to (92), we may now write
1 1 11y (1+&EKR) Sk) 4
1 il il - i - -
e N O e N
2q(k) _ 4
> 2k £ Ik (99)
with q(k) = E(k) —2[(1+k2) E(k) — (1 —k?) K(k)] /K> (100)
The expression . )
_ . 1—sin?g o r2sin? o)
3q(k) = 2f0 (=i (p)%dgo +f0 (1 —k2sin2@)tde (101)
shows that ¢(k) decreases monotonically from ¢(0) = 0 to ¢(1) = —4.
We now write Tp—ty > 1y—1, = —2k/u,, } (102)
ry—1, < ty—1y = —2k[uy < — 2k u, + Auz?/\Jk,
. 1 1 u—u, 2E(k) 4
and, as in (96) o wu & +4ku§' (103)
We put these estimates into (99) to obtain
1 1 kq(k) A
(1) |(rery )+ (’W’u‘ﬂ)} RN T (104)

where || is small and | 4] is bounded, depending only on £u; > 1.
Repeating the entire procedure starting with (65), we are led to the reverse inequality, with &
replaced by £ on the right. Applying (82) we obtain (104) with the inequality reversed, and thus

(ra+u—t)+(rﬂ+£;)=—2k2ék)(1 +€)+qu3' (105)

We place this estimate back into (99) (and the corresponding expression with £) to find, using

o)+ (o)) | < i

the ¢ being the one that appears in (104). We are led to the basic relation for an outgoing arc
(on which 0 € Tﬁ < %TC) 1 1 2/€q(/€) A

(ra+—)+(rﬂ+;;)=— R (107)

with bounded |4|, depending only on kuf > 1.
The case of a returning arc (i > §n) does not yield immediately to the same discussion, and it is
necessary to distinguish the case £ ~ 1. We note (figure 14) that the comparison Delaunay surface

(106)

a.


http://rsta.royalsocietypublishing.org/

'y
N
o \

L A

L/;

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

//\\ \\‘
A \

r

A

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE SHAPE OF A PENDENT LIQUID DROP 329

v(r) of curvature H = — Ju, now lies below u(r), and provides an upper rather than a lower bound
for 75 —r,. To obtain a lower bound, we observe that since 1 < E(k) < jmwand E'(k) < 0, there is
(for large |uy|) a unique positive solution 7 of

P2 tugt+2E(—1—uzrp—1trp) = 0; (108)
that is, there exists a unique Delaunay comparison surface #(r) through (rsu,) with mean
=1
curvature H = — 14, so that T —2E( ) /8o (109)
. Py rﬂ f
- @ _ — 11,0, 11
with k s 1+7,0, 750, (110)

The solution curve u(r) satisfies u,(r) > 9,(r), u(r) < #(r), and hence u(r) can be continued from
rs through decreasing r at least to the value #,. Letting v(r) denote now the Delaunay surface
through (74, u,) with mean curvature H = — §ug, we find u,(r) < v,(r), u(r) > v(r); it follows u(r)
cannot be continued to the minimum value r, of definition of v(r).

The relations analogous to (62, 65) become

1
Yhuptry < Wiv,+7, +33 (k), (111)

Yug+ry > 320,41, +3ﬁ3 S(k) — u, (F2—12). (112)

Ficure 14. Comparison with Delaunay arcs; returning case.

As before, we may rewrite these relations:

M 1\2]  uy—up( 1 14+7,u,)? 1
%uﬂ[(rﬁ—l- ) (ra+—) ] < az ﬁ{u“uﬁ_!_( s )}+%S(k)+%r§(va—ua), (113)

U, us,
1)\2 1)2 Ug—tug( 1 (1+7r,u,)
1 —) - il e 4 oo 1p2(p —
2uﬂ[(rﬂ+uﬂ) (r¢+ua) ] > = {u“uﬂ-i_ i } 57 S(k) +3#2(8, —u,). (114)

The further estimates must proceed differently, at least in the range £ ~ 1.
From the defining relation (108) for # and the analogous one for 7 = v, — uz, follow 7, # < Alu,|~*

forlarge |u,|. From _
ge il 0} (115)
uﬁ(uﬂ+'r)
thus follows 0 < #y—1, = Aluy|=> (116)

with bounded 4.
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330 P. CONCUS AND R.FINN

Let u* = u(f,). For given A > 0, consider a rectangle R of width A|u,|~* and height Ad|ug| 2
asin figure 15. Since u(r) cannot be extended to r = 7,, therc must be at least one point (r,,u,) in
R at which [tan¢| > A, i.e. at which

A

1 .
ICOS¢'I < m, Sll’lw > m (]17)
From (71), which holds also on a returning arc, we find, for allr < 7,
(cos ), > u+ (sinyr) /7y, (118)
and hence, at the given point, i
_ 1 A 2E(k)
(cos ), > u+;,a(1 nyDI u—1 i +A2)%(uﬁ_ T) (119)
We note E(k) < }x; for any given kg, 0 < k, < 1, we choose A so that
LA > 1. (120)

1—ky(1+22)3%

For all sufficiently large |uy|, the right side of (119) will then be positive for all u > uj, for any kin
ky < k < 1. Thus, cos { isincreasing (from a negative value) atr = r,, and we conclude that (120),
and hence also (119), continue to hold for all 7 < 7, to which u(r) can be continued. Integrating
(119), we find that a vertical must appear within a height change

i 8%u < A(L—Fk) fug, 8%u = u,—u*, (121)
uniformly in £y < £ < 1.

(731145)
Ficure 15. Estimate for u, when £ & 1.

For given k < 1 and large |u| we may improve this result by estimating cosy* explicitly. We
have

rp—fasiny* = —ffﬂpudu < —du, (r5—13), (122)

rp—ta=—30a(rf —12), (128)

from which Fo(1—singr*) < §(0,—up) (rg+1,) (rg—1a), (124)
so that 1—siny* < iEiéﬂ If—fc’ (125)
and hence cosyr¥* < 2*/2_[_12(/%)]% (1 L ]%)%. (126)
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We note (126) is similar to (70), however the term (1 +£) of (70) is replaced here by (1 —£).
That is the reason the range £ ~ 1 requires special consideration on a returning arc.
Repeating now the reasoning that led to (121), with (117) replaced by (126), leads to

8*u < A/\kuj, (127)

for all £ < kg < 1. This estimate holds for all sufficiently large |ug].

A returning arc has in all cases exactly one inflexion between the vertical points (II1 iii). It is
obvious a returning arc meets the hyperbola ru = — 1 in exactly one point.

We proceed to obtain further estimates for £ & 1, analogous to (79)—(90).

_"p—"a

Tg—Ta ra
= 2
We have k= T oty (128)
and thus 0<k—k= zrﬂuﬂ L (Pa—74) (129)

by (115). We note that the factor (1 —£) of (82) no longer appears.

The estimate for 4, —v(f,) is complicated by the strong dependence on £ of the position of the
inflexion on v(r). We avoid this difficulty by noting that the hemispherical surface w(r) of constant
mean curvature 73, that passes through (7, #5), has larger mean curvature than does v(r), hence
v(r) —w(r) > 0. It follows that

ﬂa—v(fa) < (ﬁa_w(o)) + (w(O) '—w( a))

= (B, —us—1p) +[rs— (rf—123) 3]

2E (k ,
T (130)
Formal estimation gives
E(k) ~ 1—3(1—k) [In{{5(1 -3} + 1], (131)
1 2E(k
for k near 1. Further, ,31 ~—+ Eﬁ ), (132)
a U U
E(k) +ryu 1-£\2
and thus b,—v(fy) S — ——-zl;_ﬁ—é_l_ Iy
A(1—Fk) |In (1 - k)| (133)

Up

with bounded |4|, uniformly in & for large |uy|.
A repetition of previous procedures, with (128)—(133) in place of (79)-(90), leads after some

calculation to
2kq(k) A(1—Fk)In(1—£) 1 1
u% + u} < (ra + ua) + (rﬁ + ﬂ)

< 2kR), B —Rln(1-F)
s j
with |4| and | B| bounded uniformly in £ for large |u,|. A formal, if tedious, calculation, based on
asymptotic estimates for £ and K for £ ~ 1, yields

lg(k) — g (k)| < Aug®. (185)

(134)

31 Vol. 2g2. A.
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332 P. CONCUS AND R.FINN
We place this estimate and (129) into (134) to obtain the basic estimate, for a returning arc with
k=1 5 5
3 1 —K)In(1-—
(ra+i)+(rﬂ+—) _Zkak) | ,U-RIn{=h) (136)
U, uﬂ uﬂ ulg

If, for some fixed &, there holds 0 < k£ < ko < 1, ku3 > 1, then the same procedure, using (127)
in place of (121), yields for large |u| '

1 1 2
(r“+—)+(r,g+——) _Zkak), A4 (137)
U, ug u% N
with |4]| < Ay(k,).
We summarize the information obtained thus far:

THEOREM 8. (1) 4 solution vertical at (7, u,), such that r,u, > — 1 and (715) holds withk = 1 +7,u,,
will again become vertical at (v, up), with rgus < — 1. Between the two verticals there holds 0 < < §m.
The height change is estimated by

ug = u, —2E(K) Ju, +e, (138)
with le| < A/Jkid. (139)
The solution arc meets the hyperbola ru = — 1 in exactly one point. The change in horizontal distance to the

hyperbola at the two vertical points is controlled by (107).
(i) Letk = —1—rgup, let

k=—1-rgd, =—1—rglus—2E()/(us+7)] (140)

(cf. (109)). A4 solution vertical at (r4,uz), such that ryuy < — 1 and ku}y > 1, will again become vertical at
(ry, uy) with r,u, > — 1. Between the two verticals there holds §n < v < m. There is exactly one inflexion

and one intersection with ru = — 1. The height change is estimated by
u, = uy—2E(k) Jus +e, (141)
with le| < A(1—FK)/|ugl, (142)

and A < Ay(ky) < o0 in any range 0 < kg < k < 1. The change in horizontal distance to the hyperbola
ru = — 1 is controlled by (136).

In any range 0 < k < ko < 1, if ku} > 1, then the solution will again become vertical at (r,,u,), 7, u, >
— 1; the height change is again estimated by (141), but with

le| < A/ ku} (143)
in place of (142). The change in horizontal distance to the hyperbola ru = — 1 is controlled by (137).

VII. AsYyMPTOTIC ESTIMATES

The results of § VI show that for large ||, the solution curve contracts toward the hyperbola
ru = — 1 between any two successive verticals. The estimates (107), (136) and (137) contain
quantitative information, which we now proceed to integrate to obtain new global information
on the behaviour of the solution, when [#,| is large. We set r, = 0, denote the successive vertical
points by (r;,u;), and write

¢; = |ry+1/uy|, kj=—cju;, Oc;=cjq—c

t; = —2E(k;)/(u;+1,), k=1 +’j(”i+'fj)|-} ey
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Using (144), we find that (107) and (136) now take the form, for &, £ ~ 1,

__ 2kiq(k) 1 ;
8¢; = — " +Aj4/c,~u3‘~ for jeven, (145)

SCj — 2kjuqa(kj) + Aj (1 _kj) h; (1 - E]) for J Odd,

146
7 " (146)

with |4;] < A < oo, uniformly for all sufficiently large ||, in any range 0 < &, < £ < 1.
We are interested in (145, 146) for large |u|. We note —gq(k) < —¢(1) = L, E(k) < }m, and
choose u3, to be the (unique) solution of the equation

m%‘ln (%) =é. (147)

Let KV = max {k: — 2kq(k) < —24(1 —k+4n/uj, ) In (1 —k+4n/u, )} (148)
Clearly, 0 < k¥ < 1, and

kO > max {k: — 2kg(k) < —24(1—F)In (1-£)}. (149)

For all k; > kW, there holds —A(1—£;)In (1—£;) < —k; q(k;).
Now choose umg so that (k®)3¢2(k®) u3,, > A2 For values

uj > max {up, ,u,} (150)
we may write, since k; = —¢; u;, 8¢; = — Py, (151)
; : lq(k)l) (3Iq(k)|
with g}ﬁ)( m) < P < 12%) ) (152)
Integration of (151) in a range for which £ > k@, with ¢, = —ug?, yields
ONP ~ cy®—ul, (153)

for some P in the range indicated by (152).
We consider also the relation, which follows from (141)—(143),

du; = —A;uil, 22 4; 2w, (154)
and which integrates to wy ~u—24AN, 22 AZm. (155)

From (153) and (154) we calculate

B~ LN gpa (156)
VY (T -k ’ —
. 1—7)
and setting «% = (1 —9) u2, K ~£—(~—77—. 157
guy = (1—7)uj N~ (157)

Given £, k¥ < k© < 1, there will be, for all sufficiently large |uy|, a unique smallest N = N®
for which 1
K < [M] < ko, (158)

b+

the value of the expression in (158) tends to £© with increasing |u,)|.

We reformulate our result slightly, and summarize the information thus far obtained. We note

31-2
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334 P. CONCUS AND R.FINN

that any set of points £; = const lies on the hyperbola 1 +ru = const, and that the singular solu-
tion U(r) is asymptotic to the hyperbola ru = — 1, as r— 0. The following result holds for all |u|
sufficiently large. '

TurorREM 9. Given any kO, kU < k© < 1, there exists (k) > 0 such that the solution curve, starting

at (0,u,), ¢ separates’ from the axis r = O and from the hyperbola ru = — 2, after an interval uy —uy =
[1—(1—=9)%] |uy|, in the sense that near the height uy all points on the curve lie between the hyperbolas
ru = — 1 + kO, Between uy and up a number NV ~ Inud /A of vertical points appear, and each vertical point

is followed by another (on the opposite side of ru = — 1) at a height change du; ~ — Auz™.
To proceed further, we return to the relations (107), (136) and (137); since (1 —£©@) # 0 (k©
independent of u,), we may use (143) to write (145) and (146), for j > N®, in the common form
okqlk) 4,

J
G=-—F T (159)

We consider an interval in which the last two terms on the right in (122) will be small in rela-

tion to the first term. Since kq(k)
lim=0 — g, (160)
the condition takes the form k> Alu|— (161)

for suitable 4. Integration of (159) and of (154) yields, as above,

P \tuy
~l L) 2N 1
b~ () 2 (162)
so that (161) now reads luy| > Aluy|5. (163)
We can in fact achieve the situation k ~ Alu|~%,
|u| ~ Alu,|3, (164)
for suitably large 4 (independent of «,), asymptotically for large |u,|, in a number N® ~ 1u2/4
steps. In this configuration, the solution curve has € contracted’ towards the hyperbola ru = — 1; we com-
pute in fact from (153, 155) Gy ( A \d (165
¢o A+P

as |uy| = co.

At the level uy the relation (159) no longer ensures a contraction at each step. The conditions
for appearance of successive vertical points are, however, still satisfied, and (159) still suffices to
bound the change d¢; at each step.

Let o satisfy 22 < o < 3. In any range A|u|~7 > k > B|u|@* 94D we find

1/\kuy < Ac?, (166)
and we consider the inequality |8¢;| < Ac=. (167)
We integrate and simplify, noting that
onGs > Uy (168)
for large |u,, to obtain A <eyfey < B,
|u| > [uo|®=+0P, (169)

ky > |uo| @900
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thus the solution remains in a strip of scnsibly constant width about ru = — 1, until a height
|ty ~ ug| 0%,
We conclude in particular the existence of a constant 4 such that in an interval
1499 < [u] < 2[upfes+o (170)

there holds ky < Alu|G*-8N2e+) We assert that for all sufficiently large |u|, the solution curve lies interior to
a strip determined by k= —cu=(A+1)|ul (171)

uniformly in uy as |ug| — oo, for any A sufficiently large to justify (164). This is clearly the case in the
interval (170). If the curve u(r) were to extend outside the strip (171) for value of u exceeding
— |uo|®*+99, there must be a first point p on the boundary of the strip. By comparison with
Delaunay surfaces through the point p, one then sees (note either the condition (75) or the corres-
ponding condition with u is satisfied at p) that a vertical would appear on or outside the strip
k = Alu|~%. Let ¢, be the first such point. The estimate (159), applied now in the direction of
increasing |u|, shows that a preceding vertical can be found at a point ¢,, with horizontal distance
to ru = — 1 exceeding that from ¢,. The strip £ = A|u|~% is however narrower at ¢, than at g.
This contradiction establishes the assertion.

(1”“77)!%‘0 Aluol%

Ug

A|u0|(2a-i 11/9

A|“0|:Z§

Ficure 16. Asymptotic behaviour for large |uy| at four levels (scales differ). (a) Initial separation from axis, ()
contraction toward hyperbola, (¢) confinement to strip of constant width, (d) behaviour far from [y

We summarize:

THEOREM 10. Given k© > kO, |uy| large, there is an 5(k©) (determined by (157) and (158)) so that

k < KO for luy| < |uym| = (1—9)}|uy|. The curve can be continued through successive verticals to a height

luyw| ~ Aluy|3, for suitably large A, at which level it has contracted towards ru = — 1 in a ratio given by

(165). For any o, %> < o0 < 3, the curve can be continued further through successive verticals until a height

|uy@| ~ |ug|@*+V9, and is confined to a strip of sensibly constant width, as indicated by (169). For smaller

values of |u| (relative to |uy|) vertical points presumably cease to appear; however the curve lies within a strip
31-3
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about ru = — 1, of width determined by k = A|u|~%, for sufficiently large A (independent of u,), Specifically,
ihere exists A such that for any fixed (sufficiently large) 4, there holds, for (7, 4) on the solution curve,

|F—1/d] < Ald]-3 (172)

uniformly in ug, as |u,| — co.

The global asymptotic behaviour is sketched in figure 16.

VIII. A COMPACTNESS PROPERTY

Let us consider the family of solution curves, represented in the form r = f(u;u,), with u, as
parameter, |uy| —0o. The result (172) shows that for large |u| the curve is confined to a narrow
strip about ru = — 1, and the method of proof of (172) yields as corollary the existence of a con-
stant A such that on any fixed interval a < u < b,

|0f/ou| < 4 < oo,
for all sufficiently large |u,|.
It follows there is a subsequence of values u,——co such that the corresponding functions
J (u;uy) converge, uniformly on compact intervals, for all |«| sufficiently large that (172) applies.
The limit curve €: r = # (u), when described with arc length as parameter, yields a solution of
the parametric system (3). There holds

|1+ uF (u)| < Alu|~7 (173)
for all large |u].

Each of the curves f(u;u,) can be extended globally without self-intersection as indicated in
theorem 6. Applying the general continuous dependence theorem, we find that the limit curve ¥
has the same property (a reasoning similar to the proof of theorem 6 excludes self-intersection).
The curve % has the asymptotic property u# (u) ~ — 1 for large ||, and the oscillatory behaviour
indicated in figure 1 for large . It seems likely the curve % is the singular solution U(r), and we
conjecture that is the case.

IX. ISOLATED CHARACTER OF GLOBAL SOLUTIONS

There is strong numerical evidence to suggest that global solutions of (3) lying in the region
between the envelepe of the solutions 7 = f(u; u,) and the u axis, and without limit sets or self-
intersections, are rare in the manifold of all solutions. We know of no such solutions, apart from
those described in this paper and the singular solution U(r). In figure 17 are shown samples of
the result of numerical integration of (3) through the initial point p determined by the first
intersection of f(u; —8) with U(r) and for varying initial angles &, measured counterclockwise
from the arc of the curve f(u; —8) emanating from p in the direction of increasing «. The
various curves are thus distinguished by their directions at the point p, measured relative to that
of the curve f(«; — 8) at that point.

We note the curves f(u; u,) can apparently be extended below the level u = u,, if the isolated
(singular) point of contact with the u axis is admitted. The point appears to mark a transition in
qualitative behaviour; above it, the curve behaves like a Delaunay arc generated by an ellipse
(§ III). Below that point, the curve has the general appearance of a Delaunay arc generated by a
hyperbola, with the characteristic double points of those arcs.
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Ficure 17. Singular solution and other solutions of (3).
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An analogous transition occurs on neighbouring solutions without occurrence of singular
points on the axis. In any event, if such singular points are admitted, the corresponding (extended)
curves f(u: u,) are embedded naturally in a solution set, all of which develop double points for
sufficiently negative u, with (we conjecture) the single exception of the solution U ().

We wish to thank J. Serrin, J. Spruck and B. Turkington for stimulating conversations and
helpful comments. We are indebted to Ivy Kuo for providing graphical capabilities to our
computer program. Her contribution was an invaluable aid in developing the material of
§IX and for preparing figure 17.
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APPENDIX

We prove here the local existence theorem discussed in the Introduction.
TueoreM. For any prescribed uy < 0, there is a unique solution u(r;u,) of (2) in an interval 0 < r <
8 (ug), such that limu(r; uy) = ug.
r—>0
Proof. We introduce (formally) the angle ¥ as independent variable, obtaining the equations
dr  —rcosyy du  —rsing

vty Ay (1744a,b)
with A = ru+sin . Writing 72 = v, we derive the system
d42/dyr = 2 (cosyy—v) sin i, (175)
dv 2vcos
- v (176)

in which « does not appear explicitly.
Corresponding to &8(x,) > 0 (to be determined) we introduce a Banach space # of pairs
(), n(¢)) of continuous functions on F5: 0 < ¥ < 6, with norm defined by

IEml = max |E()| +max 9 ()], (177)

5 Is
and we define a closed convex set 4 < % by the relations
€| < 16ugtsinty, (178)
7] < Bugsindyp, (179)

on ;. A continuous mapping & : (£,7) — (£, 9) of # — % is determined by the relations

v = duy?sin2y + £, (180)
A= —siny+7, (181)
7 = duy?sin® i + £, (182)
A = —siny+4, (183)
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dd  2vcosyr
A on J;—{0}, (184)
dA2 .
d@” 2 (costy—v)sinyy on J;—{0}, (185)
8(0) = 0, lim (4/siny) = —1, (186)
-0

and one sees easily that if &(x,) is sufficiently small, then & : A4 — 4.

We assert & () is precompact. For the intermediate mapping (&, ) - (ﬁ,ﬁ) determined by
(180), (181) and (184)—(186) carries .# onto a set of equicontinuous bounded functions, hence by
(182) and (183) the image set (£, 9) are also equicontinuous and bounded. We conclude from
Schauder’s fixed point thorem (¢f. Gilbarg & Trudinger 1977, p. 222) that there exists a solution
of (175) and (176) in %, with v(0) = 0, l}fim (4/sinyy) = —

—0

Using the functions v, 4 thus obtained, we define 7 (1) to be the positive root of v, and we define
u(y) by integrating (1745), with «(0) = u,. We shall show the three functions «, r, 4 determine a
solution of (1744, b) with the requisite properties.

LEmMA. For the functions just obtained, there holds A = ru+sin .
Proof. Set w = A — (ru+sinyr). Using (174) and (175) we find
dw/dyr = —w (cos ) /4, (187)
and thus w(y) = w(ih) exp{— f : Coj””dw}, (188)

for 0 < oy < ¥ < 0(uy)- '
From (179) and (181) we have, as {r-> 0,

A = —siny +0(9), (189)

and thus exp {_ f :‘PZ—"” dzﬁ} o -+ 0. (190)
Similarly, using (1745) and (178)—(181),

r = —2u3tsin g + O (), (191)

and 4 = uy+ O(), (192)

and hence ru+sin g — —sin g+ 0(y9), (193)

w= A (rutsiny) = O), (194)

and it follows that the right side of (188) tends to zero with ¥r;. Thus, w(y) = 0, as was to be shown.
We may now complete the proof. From (174a), (189) and (191) we find that dr/dyr # 0 in
—{0}if 0 is sufficiently small. Thus, we may write, using (1744) and the lemma,
(rsiny), = siny +r(siny),
= siny +rcosyrdyr/dr
= —71u,

that is, (2) holds in the interval 0 < r < r(8), which was to be shown.
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